SUCCESS = SOFT SKILLS + HARD SKILLS + APPLIED SKILLS

NCLab provides learners with carefully sequenced, game-based courses, a Creative Suite of application tools, and project-based curriculum that can be used in schools, libraries, clubs, and trainings.

Soft Skills: interpersonal and character skills

Hard Skills: area-specific, measurable skills

Applied Skills: skills required for specific jobs and careers

Communication

Questioning and responding; understanding directions; presenting results

Vocabulary and Writing Skills

Instructions, model descriptions, game narratives, commands, keywords, spelling, and syntax; commenting within programs.

Technical Documentation

Writing technical specifications, communicating the why's and how's effectively; training.

Collaboration

Collaborative problem-solving and projectbased learning; shared sandbox and game environments

Collaborative Coding and Modeling

Splitting complex programs and 3D models into simpler tasks, solving them, then combining the results.

Teams in the Workplace

Solve real world problems as a team, by writing programs and building 3D models.

Problem-Solving

Perseverance, efficiency, planning, breaking complex tasks into simpler tasks using design cycles, understanding the value of failure.

Using Appropriate Tools

Solving problems using Python and other programming languages; using Constructive Solid Geometry (CSG) to build 3D models.

Solve Real World Problems

Write programs and create 3D models for specific applications such as games, databases, complex calculations, prototyping, machining, and robotics.

Adaptability

Ability to adapt existing solutions to new situations; flexible thinking.

Adjusting Programs and 3D Models

Modifying existing computer programs and 3D models in response to new conditions.

Responding to Change

Products, computer programs, supply and demand, design specifications and other factors constantly change.

Critical Thinking and Observation

Use common sense and feedback to evaluate and improve results.

Logical and Spatial Reasoning

Using logic to write efficient programs; using spatial reasoning to build and manipulate 3D models.

Advanced Applications

Advanced Computer Aided Design (CAD), programming languages, and computational tools.

Creativity and Innovation

Looking for novel solutions and designs. Thinking outside of the box.

Performance Tasks

Writing code and building 3D models for one's own projects.

Innovating in the Workplace

Inventing and advancing new technology.

Awareness of Cause and Effect

Understanding the consequences of one's actions.

Understanding Constraints

Understanding computational complexity, software and hardware limitations, impact of human error.

Social and Environmental Impact

Assessing costs, availability of resources, short and long term impacts.